

Gastric acid and GI disorders

Prof. Hein Yarzar Aung
Senior Consultant Physician
Clinical Director
North Okkalapa General Hospital

Content

- 1. Physiology of gastric acid secretion
- 2. Phases of gastric acid secretion
- 3. Molecular control pathways
- 4. Disorders related to gastric acid secretion

- 1. Gastric Acid Composition
 - Hydrochloric acid (HCl) is secreted by <u>parietal cells</u> in the gastric glands
 - Maintains a <u>luminal pH of 1.5–3.5</u>
 - Functions
 - Protein denaturation
 - Activation of pepsinogen → pepsin
 - <u>Defense</u> against pathogens

- 2. Parietal Cell Function
 - Located in the <u>fundus and body</u> of the stomach
 - Acid is secreted via H⁺/K⁺-ATPase (proton pump) on the apical membrane

- 3. Stimulation of Acid Secretion
 - Neural
 - Vagus nerve (CN X) → Acetylcholine binds to M3 receptors → ↑ HCl
 - > Hormonal
 - Gastrin from G-cells (antrum)
 - Stimulates parietal cells directly
 - Stimulates enterochromaffin-like (ECL) cells → Histamine → H₂ receptors
 - Paracrine
 - Histamine from ECL cells binds to H₂ receptors → activates adenylate cyclase
 → ↑ cAMP → ↑ H⁺ secretion

- 4. Inhibition of Acid Secretion
 - Somatostatin from D cells (antrum) inhibits
 - G cells (↓ gastrin)
 - ECL cells (↓ histamine)
 - Parietal cells directly

- Prostaglandins (PGE2) inhibit acid by
 - Decreasing cAMP in parietal cells
 - Enhancing mucosal protection by ↑ mucus and bicarbonate

2. Phases of Gastric Acid Secretion

Phases of Gastric Acid Secretion

Phase	Stimulus	% Total Acid	Mechanism
Cephalic	Sight, smell, thought of food	~30%	Vagal stimulation
Gastric	Food in stomach (distension, peptides)	~60%	Gastrin, vagal, local reflexes
Intestinal	Chyme in duodenum	~10%	Initially stimulates, then inhibits via secretin, CCK

3. Molecular control pathways of Gastric Acid Secretion

Molecular control pathways of Gastric acid

- <u>cAMP Pathway</u> (Histamine)
 - Activates adenylate cyclase → ↑ cAMP → activates Protein Kinase A (PKA) → inserts H⁺/K⁺ ATPase into membrane
- Ca²⁺ Pathway (ACh, Gastrin)
 - Activates IP₃/DAG pathway \rightarrow ↑ intracellular Ca²⁺ \rightarrow stimulates acid secretion

Control of Gastric acid secretion

Pharmacological Options for Acid Suppression

Class	Drug	Mechanism	Onset	Use
Antacids	MgOH₂, AlOH₃	Neutralize acid	Immediate	Symptomatic relief
Sucralfate	_	Protective mucosal barrier	_	Stress ulcers
Misoprostol	_	PGE₁ analog, increases mucus	_	NSAID-induced ulcers (pregnancy caution)
H2RAs	tidine	H2 receptor antagonist	Rapid (within 1 hr)	Mild GERD, adjunct to PPI
PPIs	prazole	Irreversible inhibition of H ⁺ /K ⁺ ATPase	1–2 hrs, max effect 3–4 days	GERD, PUD, ZES

Molecular control pathways of Gastric acid

- Advanced molecular insights
 - > 1. H⁺/K⁺-ATPase (Proton Pump)
 - A P-type ATPase with α and β subunits
 - Target of PPIs and Vonoprazan
 - 2. Proton Pump Trafficking
 - Resting parietal cells store pumps in tubulovesicles
 - Upon stimulation, vesicles fuse with the apical membrane → pump insertion →
 acid secretion
 - Actin, Rab11, and H⁺/K⁺-ATPase recycling are key in this vesicle trafficking

Control of Gastric acid secretion

- Vonoprazan: A Novel gastric acid suppressant,
 - ➤ A Potassium-Competitive Acid Blocker (P-CAB)
 - ▶ Directly blocks H⁺/K⁺ ATPase at the K⁺-binding site, unlike PPIs which require acid activation

Feature	Vonoprazan	PPI
Target	K ⁺ site on proton pump	H ⁺ /K ⁺ -ATPase (sulfhydryl
		binding)
Activation	Active as given	Requires acid activation
рКа	~9.4 (stable)	Weak bases, degrade at neutral
		pH
Duration	~24 hours acid control	~12–16 hours
	Especially at night time	
pH Stability	Stable in acid	Unstable in acid

Control of Gastric acid secretion

- Vonoprazan: A Novel gastric acid suppressant
 - ➤ A Potassium-Competitive Acid Blocker (P-CAB)
 - ▶ Directly blocks H⁺/K⁺ ATPase at the K⁺-binding site, unlike PPIs which require acid activation

Feature	Vonoprazan	PPI
Onset	1–2 hours	Depends on generation of PPI (average – hours and less rapid than Vonoprazan)
Acid suppression	More potent	Less potent
CYP metabolism	<u>Minimal</u>	Extensive (e.g., CYP2C19 polymorphisms affect PPIs)
Meal dependence	<u>No</u>	Yes

- 1. Gastroesophageal Reflux Disease (GERD)
 - Pathophysiology
 - Dysfunctional lower esophageal sphincter (LES) permits reflux of gastric contents
 - Chronic exposure causes esophagitis, Barrett's esophagus, and risk of adenocarcinoma

> Symptoms

- > Heartburn
- Regurgitation
- Dysphagia
- Chronic cough/laryngitis

- 2. Peptic Ulcer Disease (PUD)
 - **Causes**
 - > H. pylori infection (80–90% of duodenal ulcers)
 - > NSAID use
 - Smoking
 - > Alcohol

- Pathophysiology
 - Disruption of mucosal defense by acid and pepsin

- 3. Zollinger–Ellison Syndrome (ZES)
 - Pathophysiology
 - ➤ Gastrin-secreting tumors (gastrinomas) → excessive acid → refractory ulcers

- Hypochlorhydria & Achlorhydria
 - > 1. Autoimmune Atrophic Gastritis & Pernicious Anemia
 - Pathophysiology
 - > Autoantibodies against parietal cells and intrinsic factor
 - ➤ Loss of acid → impaired B12 absorption
 - Complications
 - Megaloblastic anemia
 - Increased risk of gastric cancer

- Hypochlorhydria & Achlorhydria
- 2. Chronic PPI Use: Safety Considerations
 - Risks (with long-term use >1 year)
 - Malabsorption: B12, calcium, magnesium, iron
 - Enteric infections: C. difficile, Salmonella
 - Rebound hypersecretion
 - Renal complications, osteoporosis (debatable)

Disorder	Acid Status	Key Features
GERD	↑	Heartburn, regurgitation
PUD	↑	Epigastric pain, H. pylori
ZES	个个	Multiple ulcers, diarrhea
Atrophic Gastritis	↓	B12 deficiency
Chronic PPI Use	↓	Nutrient deficiencies

Take-home Message

Gastric acid and GI disorders Take-home message

- 1. Gastric Acid: Essential Yet Potentially Harmful
 - Hydrochloric acid (HCl) is secreted by parietal cells in response to gastrin, histamine, and acetylcholine
 - It plays vital roles in
 - Protein digestion (via activation of pepsinogen to pepsin)
 - Defense against pathogens
 - Facilitating absorption of iron, calcium, and vitamin B12

Gastric acid and GI disorders Take-home message

- 2. Dysregulation of Acid Secretion Is Central to Many GI Disorders
 - ➤ <u>Hypersecretion</u> (↑ Acid) Leads To
 - ➤ Gastroesophageal Reflux Disease (GERD)
 - Peptic Ulcer Disease (PUD)
 - Zollinger–Ellison Syndrome (ZES)

- ➤ <u>Hyposecretion</u> (↓ Acid) Associated With
 - Chronic PPI use
 - Autoimmune atrophic gastritis
 - Pernicious anemia

Gastric acid and GI disorders Take-home message

- Balance of acid secretion and mucosal defense is crucial for GI health
- Helicobacter pylori and NSAIDs remain major preventable causes of PUD
- Gastric acid suppressing drugs must be used wisely
- Chronic acid suppression has real risks—evaluate indications regularly
- A novel gastric acid suppressing drug: Vonoprazan is now emerging with promising evidences from molecular level to clinical experiences

Thank you